
モジュール化アセンブラプログラミング

藤 波 順 久†

プログラミング道の原点といえば、アセンブリ言語である。本稿では、すべてアセンブリ言語で書
かれた中規模 (ソースファイルで数万行程度)のプログラムを開発するために必要となる、モジュール
化の概念を紹介する。まず、呼び出し規約を自由に決められるといった、アセンブリ言語の利点を述
べる。次に、かつて流行した構造化マクロを紹介する。続いて、モジュール化を効果的に行うために、
モジュールや各サブルーチンに書くべきコメントを、例を挙げながら説明する。アセンブリ言語での
テクニックもいくつか紹介する。

Modularized Assembler Programming

FUJINAMI Nobuhisa†

If you started to go on the tao of programming, then you know an assembly language. This
article introduces the concept of modulalization, which is indispensable to develop medium-
scale programs (tens of thousands of lines) written thoroughly in an assembly language. It first
describes the merits of assembly languages, e.g. the freedom to decide the procedure calling
conventions. Then, control structure macros, once popular, are introduced. It explains, using
examples, how to write comments of the modules and the subroutines to make the concept
effective. Some programming techniques in assembly languages are also introduced.

1. は じ め に

プログラミング道の原点といえば、アセンブリ言語

である。アセンブリ言語を使えば、その機種で用意さ

れているすべての機能を自由に使うことができる。ま

た、コンパイラの癖やライブラリの細かい仕様☆1を知

らなくてよいため、プログラムはわかりやすい。

本発表☆2で扱うのは、すべてアセンブリ言語で書か

れたプログラムである。速度が必要な部分だけアセン

ブリ言語で書き直すような、中途半端なものではない。

後者と比べた前者の利点は、例えば次の通りである。

呼び出し規約を自由に (効率的に)決められる これは

アセンブリ言語の大きな利点である。呼び出し規

約をサブルーチンごとに臨機応変に変えて、呼び

出しのオーバーヘッドを可能な限り小さくできる。

後者では、少なくとも入口と出口では、ABI☆3の

関数呼び出し規約に従わなければならない。

† 株式会社ソニー・コンピュータエンタテインメント
Sony Computer Entertainment Inc.

☆1 制限事項とも言う。
☆2 本研究は、所属とは無関係に行われた。
☆3 Application Binary Interfaceの略とされるが、多くの場合、

System V Application Binary Interface6)に倣っており、
C言語の処理系定義事項や、オブジェクトファイル形式なども
規定する。

極端に小さいプログラム 後者では、スタートアップ

ルーチンや余計なライブラリがリンクされてしま

うのを防ぐのは難しい。すべてアセンブリ言語で

書けば、この問題は根本的に解決される。

OS非依存プログラム 一部でも高級言語で書かれた

プログラムは、うっかり特有のライブラリを使っ

てしまうなど、特定のOSに依存してしまいがち

である。すべてアセンブリ言語で書けば、OSに

依存する部分が明確になり、それを避けたり分離

したりすることが容易である。

最初の点について補足しておく。デバッガ、プロファ

イラなど、各種のツールが整った環境では、各ツール

がABIに従っていることを前提としているため、その

OS上では常に従わねばならないような幻想にとらわ

れがちである。実際には、システムコールや共有ライ

ブラリの呼び出しなどだけ従っていればよい。

アセンブリ言語には欠点もある。最大の問題は、プ

ロセッサに依存することである。しかし最近では、イ

ンテルの8086の後継やその互換プロセッサ (x86プロ

セッサ)が使われることが多くなったので、特にパソ

コン☆4では問題にしなくてよいとも言える。一方、高

級言語を使っていたとしても、プロセッサ (と動作環

☆4 Macintoshも2006年からx86に移行する。

境)非依存にするのは簡単ではない。C言語では、ヘッ

ダlimits.h、float.h、stdint.hで定義されている

マクロを使って注意深くプログラムを書いたり、環境

に特有のマクロに対し#ifdef指令などを使って処理

を分けたりする必要がある。Javaのように、効率を一

部犠牲にして、プロセッサ非依存の実行環境 (仮想マ

シン)を使う方法もある。いずれにしろ非依存にする

のはそれほど簡単ではない。

もう一つの問題は、プログラマ人口が少ないことで

ある。これについては、本発表で増えることを期待

する。

本発表では、すべてアセンブリ言語で書かれた中規

模 (ソースファイルで数万行程度)のプログラムを開発

するために必要となる、モジュール化の概念と、関連

する話題を紹介する。本稿ではまず、かつて流行した

技術として、小規模のプログラムの開発を効率化する、

構造化アセンブラMACROを2節で紹介する。しかし

これだけでは、1万行を超えるプログラムを開発し保

守するには不十分である。3節では、アセンブリ言語

のモジュール化の概念を説明し、それを実現するため

のコメントの書き方を解説する。プログラムが大きく

なってくると、途中からプログラムの構成を変更した

り、さまざまな環境で同じコードを動かしたりするた

めのテクニックが必要になってくる。4節では、これ

らのいくつかを紹介する。最後に5節でまとめを行う。

なお、本発表で紹介する例は、x86プロセッサ用の

Microsoft Macro Assembler、およびその互換アセン

ブラ用のソースファイルの一部である。しかも、本発

表用に作ったのではない、「本物」のソースファイル

から取り出したものである。

2. 構造化アセンブラMACRO

20年ほど前に、アセンブラMACROプログラミン

グの構造化アセンブラMACRO1)5)が流行した。これ

は、if、while、switchなどの制御構造を実現するも

ので、ループなどで必要なラベル名を考える作業から

プログラマを解放し、読みやすいプログラムを書ける

ようにした。当時はマクロを使って構造化を実現して

いたが、類似のものが以後のアセンブラ (MASM6.0

など)の擬似命令として採り入れられている。

著者もこれを参考に、独自の改良を加えたマクロ

を作成した。図1は、その使用例である。$REPEATと

$UNTILは繰り返しを表す。$UNTILにつける終了条件

は、フラグを変更する命令と、条件ジャンプの条件 (条

件ジャンプのニーモニックから最初のJを除いたもの)

で表す。ここでは使っていないが、$REPEATにはルー

プ継続条件をつけられるし、ループを抜ける$EXITな

PRDEC:
PSH AX,CX,DX,BX
CLR CX
$REPEAT
CLR DX
PSH CX
MOV CX,10
DIV CX
PUL CX
PSH DX
INC CX

$UNTIL <TEST0 AX>,Z
$IF <SUB BL,CL>,A
MOV AL,BH
$REPEAT
CALL PRCHR

$UNTIL <DEC BL>,Z
$ENDIF
$REPEAT
PUL AX
ADD AL,’0’
CALL PRCHR

$UNTIL LOOP
PUL BX,DX,CX,AX
RET

図1 構造化マクロの使用例 (BPP4A.ASMより)

ども使える。$UNTILにはまた、特殊な書き方として、

ジャンプ命令だけを書くことができ、無限ループなど

を表すのに使う。図1の最後のループは、ジャンプ命令

としてLOOP命令を使ったものである。$IFと$ENDIF

は条件つき実行である。$ELSIF、$ELSEも使える。

本稿の例では、以後もこの構造化マクロを使用する。

また、独自に定義したマクロとして、TEST reg,regに

展開されるTEST0 reg、XOR reg,regに展開されるCLR

reg、条件つきリターンRET condなども使用する。

構造化マクロによって、制御構造はわかりやすくなっ

た。次は手続き呼び出しである。しかしながら、既存

の構造化MACROや、アセンブラ擬似命令は、高級言

語の呼び出し規約をそのままサポートする方向に行っ

てしまい、アセンブリ言語のメリットをあまり生かし

ていない。例えば、アセンブラMACROプログラミ

ングでは、標準入出力2)、文字列操作3)、C言語関数

呼び出し4)と進んだ。TASMなどのアセンブラも、擬

似命令でCやPascalの手続き/関数呼び出しをサポー

トする。

3. モジュール化とコメント

本発表でモジュールと呼んでいるのは、一つのオブ

ジェクトファイルにアセンブルされるソースファイル

のことである。各モジュールは、PUBLIC擬似命令な

どを用いて、他のモジュールに公開するサブルーチン

や変数などのシンボルを定義し、また、EXTRN擬似命

令などを用いて、他のモジュールの提供するシンボル

を参照する。図2は、シンボルを参照するモジュール

が使うためのインクルードファイルの例である。

本節では、モジュールが公開するサブルーチンに必

.XLIST

_BSS SEGMENT

EXTRN BIO_FLAG:BYTE

_BSS ENDS

_TEXT SEGMENT

EXTRN INIT_BIO:NEAR
EXTRN EXIT_BIO:NEAR
EXTRN TEST_CHR:NEAR
EXTRN COLOR2ATTR:NEAR
EXTRN PHY_SCROLL_UP:NEAR
EXTRN PHY_SCROLL_DOWN:NEAR
EXTRN PHY_SCROLL_LEFT:NEAR
EXTRN PHY_SCROLL_RIGHT:NEAR
EXTRN PHY_CLS:NEAR
EXTRN SAVE_TEXT:NEAR
EXTRN LOAD_TEXT:NEAR
EXTRN SCREEN_SWITCH:NEAR
EXTRN DISPLAY_CURSOR:NEAR
EXTRN ERASE_CURSOR:NEAR
EXTRN FUNCTION_KEY:NEAR
EXTRN GET_KEY:NEAR

_TEXT ENDS

.LIST
図2 モジュールBIO.ASMが公開するシンボルを他から参照する

ためのインクルードファイルBIO.EXT

ず必要になる、入出力条件のコメントの書き方を述べ

た後、モジュールのコメントの書き方を紹介する。

3.1 サブルーチンの入出力条件

呼び出し規約を自由に決められるというアセンブリ

言語の利点を、最大限に生かすためには、サブルーチ

ンごとに呼び出し規約を明示する必要がある。手続き

型言語では、各手続きについて、機能、引数、戻り値

に対するコメントを書くのが普通である。アセンブリ

言語では、引数と戻り値はレジスタ名まで書く必要が

ある。その代わりに、戻り値は複数使用できる。さら

に、値が破壊されるレジスタを書くことで、呼び出し

規約についてのコメントが完成する。

図3は、サブルーチンとそれの入出力条件のコメン

トの例である☆。コメントは、原則として以下のよう

に書く。

入力 レジスタ (場合によってはメモリ上の変数)名と

それに入っているべき値の説明を書く。値を使用

しない (どんな値が入っていてもよい)レジスタは

書かない。

出力 レジスタ (場合によってはメモリ上の変数)名と

それに返される値の説明を書く。値が不明 (有用

でない)の場合は「破壊」と書く。値が保存され

るレジスタは書かない。

場合分け 特定の場合 (操作成功など)にだけ値が設定

☆ 印刷では白黒だが、レジスタ名に色付けが可能なエディタで見
るほうが見やすい。

;Color to Attribute
;入力：ALに色番号
; LSB-B,R,G,reverse,blink,underline,ve
rticalline,*-MSB
;出力：AXに属性

PUBLIC COLOR2ATTR

COLOR2ATTR:
ROR AX,1
ROR AX,1
ROR AX,1
AND AX,0E00FH
$IF <TEST AL,03H>,PO
XOR AL,03H

$ENDIF
SHL AL,1
INC AX
OR AL,AH
CLR AH
RET
図3 色番号を入力とし、機種に特有の属性値を計算するサブルー

チン (BIO.ASMより)

;Get Key
;入力：なし
;出力：NZならALに文字、Zならなし、AHは破壊

PUBLIC GET_KEY

GET_KEY:
PSH DX
MOV DL,0FFH
F_CONOUT
$IF ,NZ,OR
INT 21H ; F_CONOUT
$C ,NZ
$IF <TEST0 AL>,Z
INT 21H ; F_CONOUT
$IF ,NZ,AND
MOV DH,AL
INT 21H ; F_CONOUT
$C ,NZ
ROL AL,1
ROL AL,1
ROL AL,1
ROL AL,1
OR AL,DH
TEST0 DL

$ENDIF
$ENDIF

$ENDIF
PUL DX
RET
図4 キーボードから文字が入力されていたら、それを返すサブ

ルーチン (BIO.ASMより)

されるレジスタは、場合分けして説明する。後述

するように、操作成功などの条件は、フラグレジ

スタの特定の値で示されることもある。

空の場合 入力とする値がない場合、あるいは出力と

なる値や破壊されるレジスタがない場合、「なし」

と書く。

メモリの場合 特定のメモリ番地の値を入力また

は出力とする場合、レジスタ名の代わりに

[BMP WIDTH]のような角括弧で囲んだ表現を使う

ことがある。

図4は、入力が空で、出力で場合分けをしている例

である。文字が入力されているかどうかは、ゼロフ

;Print Hex
;入力：DX:AXまたはAXまたはALに数値
;出力：なし

PRHEX8:
XCHG DX,AX
CALL PRHEX4
XCHG DX,AX
PRHEX4:
XCHG AH,AL
CALL PRHEX2
XCHG AH,AL
PRHEX2:
PSH AX
SHR AL,1
SHR AL,1
SHR AL,1
SHR AL,1
CALL PRHEX1
PUL AX
PRHEX1:
PSH AX
AND AL,0FH
CMP AL,0AH
SBB AL,69H
DAS
CALL PRCHR
PUL AX
RET

図5 レジスタの値を16進数で表示するサブルーチン
(LHAHDR.ASMより)

ラグが降りている (NZ)か立っている (Z)かで示されて

いる。

同じようなサブルーチンを並べて定義している場合、

コメントをまとめてしまってもよい。図5はそのよう

な例である。ここで、DX:AXとは、DXを上位16ビッ

ト、AXを下位16ビットとする32ビット数を表す。

3.2 特別扱いが必要なレジスタ (x86の場合)

プロセッサによっては、通常のコメントの書き方で

は煩雑になるような、特殊な使い方のレジスタを持っ

ていることがある。x86の場合には、次のようなもの

があり、コメントの書き方に工夫が必要になる。

フラグレジスタ 多くの演算命令で暗黙の出力レジス

タとなっており、サブルーチンの出口での値は有

用でない (原則に従えば「破壊」と書くべき)こと

が多い。それを毎回書くのは煩わしいので、何も

書かなければ破壊されるとみなす。変更されない

ときは「保存」と書く。フラグでエラー、ステー

タスなどを返すときは、それぞれ説明を書く。そ

の際、フラグレジスタの各ビットに対して、次の

ような略語を使う。

C キャリー (Carry)フラグの値、またはキャリー

フラグが立っている (C=1)こと

NC キャリーフラグが降りている (C=0)こと

他のフラグ (P: Parity, Z: Zero, S: Signなど)も

同様である。コメントに書かれていないフラグは

破壊されるとみなす。なお、ディレクション (Di-

;Test Character
;入力：AXにVRAMの値
;出力：１バイト： Z,NC,NS
; 半角： Z, C,NS
; 全角左： NZ, C,NS
; 全角右： NZ, C, S

PUBLIC TEST_CHR

TEST_CHR:
$IF <TEST0 AH>,NZ
$IF <CMP AL,09H>,AE,AND
$C <CMP AL,0CH>,B
CMP AL,AL
STC
RET

$ENDIF
TEST0 AL
STC

$ENDIF
RET
図6 VRAMに書かれている文字の種類をフラグで返すサブルー

チン (BIO.ASMより)

;Check for Print

CHECK:
PSH AX,DX,DI
READCHR
CALL TEST_CHR
$IF ,NZ
$IF ,S
CALL ERASE_LEFT

$ELSE
CALL ERASE_RIGHT

$ENDIF
$ENDIF
PUL DI,DX,AX
RET
図7 図6のサブルーチンを使って、半角文字の表示前に余計な文

字を消すサブルーチン (AIO.ASMより)

rection)フラグ☆だけは、モジュール全体で常に0

と決めておく (1にしたらすぐに戻す)など、別の

方法に従うことがある。

セグメントレジスタ ☆☆ モジュールで共通に決めた

ものは、サブルーチンの入力条件としては省略

する。

スタックポインタ スタックの残り容量についての記

述は、特に含めない。再帰呼び出しなどがあると

きは、適当な箇所でチェックするなど、コメント

とは別の方法で対処する。

部分レジスタ ☆☆☆ 一部だけに値が設定されるとき

は、そのレジスタ名を書く。32ビットレジスタの

上位16ビットには名前がないが、EAX-AXのよう

に書くことにする。

図6は、フラグを複数使って値を返す例である。文

☆ ストリング操作命令を番地が増加する方向に使うときに0、減少
する方向なら1を設定する。

☆☆ x86のアドレスはセグメントとオフセットの組で指定するが、そ
のセグメントアドレスを入れるレジスタ。

☆☆☆ 例えば32ビットレジスタEAXの下位16ビットがAXで、AX

は8ビットのAHとALから成る。

;Cons 構成
;入力：ESIにCDRセルの番地、EDIにCARセルの
番地
;出力：EBXにセルの番地
; Cにエラー

PUBLIC CONS
CONS:
...

;Get Array Element 配列からの要素の取り出
し
;入力：EBXに配列セルの番地、EAXに添字
;出力：EDIに要素
; Cに0

PUBLIC GET_ARRAY_ELEMENT
GET_ARRAY_ELEMENT:
...

;Array Size 配列の大きさ
;入力：EBXに配列セルの番地
;出力：ECXに要素数、EAXに最初の添字

PUBLIC ARRAY_SIZE
ARRAY_SIZE:
...
図8 リスト処理のサブルーチン (consセルを返す、配列から要素

を取り出す、配列の大きさを返す)(CELL.ASMより)

XTOLIST:
PUL EBX
CALL LIST?
RET NC
...
CALL ARRAY_SIZE
ADD EAX,ECX
CLR ESI
$REPEAT <$EXIT JECXZ>
DEC EAX
CALL GET_ARRAY_ELEMENT
PSH EBX
CALL CONS
MOV ESI,EBX
PUL EBX
RET C
$UNTIL LOOPD
MOV EBX,ESI
RET
図9 引数をリストに変換する (ここでは引数が配列の場合以外は省

略)(OBJECT.ASMより)

字の種類をフラグに反映する際、VRAMの値は2バ

イト文字なら上位8ビットだけでなく下位8ビットも

0以外であること、全角文字の右半分ならビット7が

立っていることを利用している。フラグを設定するた

めの特別な命令 (STCなど)はあまり使われていない。

というよりはむしろ、あまり使わなくてすむように、

出力のフラグの組み合わせを決めておくのが普通で

ある。図7は、フラグで返された値を使う例である。

汎用レジスタで値を返した場合と異なり、すぐに条件

ジャンプ命令を使うことができる。

図8は、フラグレジスタを含めて、複数のレジスタ

に値を返すサブルーチン (本体は省略)の例である。入

力や出力のレジスタをうまく選んでおくことで、使う

側は引数をコピーする回数を減らすことができる。図9

は、これらを使って配列をリストに変換するコード片

である。ARRAY SIZEに与えた配列セルの番地EBXは、

GET ARRAY ELEMENTにそのまま与えることができる。

ARRAY SIZEの戻り値のうち要素数ECXは、そのまま

ループカウンタとなる。リストは逆順 (最後の要素から

最初の要素へ向かう順番)で構成するため、ARRAY SIZE

のもう一つの戻り値である最初の添字EAXに要素数ECX

を足してから1ずつ減らして、GET ARRAY ELEMENTの

添字として使っている。GET ARRAY ELEMENTの戻り値

EDIは、そのままCONSの引数の一つ (CAR要素)とな

る。CONSがエラーを返したら、このコード片もエラー

(C)を返す。

3.3 モジュールのコメント

各モジュールには、それが提供する機能の概略と、

公開するサブルーチンに共通する規約を書く。それに

は、共通して使うデータ構造の説明、前節で紹介した

ような特殊なレジスタの使い方の習慣、外部に必要と

するサブルーチンや変数などが含まれる。図10は、そ

のようなコメントの例である。マーク・スイープ方式

のガベージコレクションを行うため、外部に必要とす

るサブルーチンの説明が複雑になっている。

ソース中のコメントで扱いきれるのは、モジュール

以下の粒度までである。モジュールが複数集まって構

成される部分 (著者らは例えば、カーネル部、エディ

タ部のように呼ぶ)の規約については、モジュール構

成の説明を含めて、コメントではなく別に文書を書き

起こすほうが適切と考えている。図11は、別文書で

書かれたカーネル部の説明の例である。この文書を読

めば、プログラムがMS-DOSでの拡張メモリの管理

方法4種類すべてに対応することや、そうするための

コーディング上の注意点などがわかる。なお、ここで

参照しているALLOC SEGルーチンは、次節で例として

紹介されている。

4. 互換性テクニック

プログラムの開発中には、規約を変更したくなるこ

とがある。小規模な変更、例えば数箇所から呼ばれて

いるサブルーチンの引数レジスタの変更程度であれ

ば、関係箇所をすべて検索して直すこともできる。し

かし、複数のモジュール全体で共通して使っている規

約であれば、そうはいかない。

このような場合、高級言語でよく行うのと同様に、

両方の規約が共存できる環境にまず移行し、次に新し

い規約だけの環境に移行する方法が良く用いられる。

規約を共存させるのは、きちんと説明すると意外とや

やこしくなりがちだが、それほど難しいことではない。

そのようなテクニックは、複数の環境で動くプログラ

; 外部に必要とする変数

;STACK_BTM: スタックポインタの初期値

; 外部に必要とするルーチン

;CHECK_STACK: スタックの残りが十分か調べる
;入力：なし
;出力：Cにエラー

;CELL_ERROR: セル領域不足のエラーメッセージを表示する
;入力：なし
;出力：Cに1

;MARK_OTHER: 変数など以外のデータをマークする
;入力：なし
;出力：EAX,ECX,EBX,ESI,EDIは破壊
; ルーチンでは、EBXにマークするセルの番地を入れてMARK_CELLを呼ぶことを、必要な
;だけ繰り返す。
; 内部でセルをアクセスするときには、GCM（CAR）またはGCX（ADR）が立っていること
;があるのでマスクする必要がある。
; ルーチン内では、ヒープの大きさを縮小するためにRESIZE_HEAPを呼んでもよい。
;GET_ARRAY_ELEMENTとARRAY_SIZEで配列を参照してもよい。
; MARK_OTHERが呼ばれるときは、ESはDSと等しくなっている。MARK_CELLを呼ぶときも、
;リターンするときも、これを変えてはならない。DGROUPが必要ならFSを使う。

;<<< Cell Format >>>

; ################################ ################################
; || | |
; || GC eXtended Mark |
; |GC Mark |
; 0:Heap 0:Heap
; 1:Cons 1:Cons
; ------------Hash/Tag------------ *------------Address------------
; --------------CAR------------*** --------------CDR------------***

図10 リスト処理モジュールのコメント (一部)(CELL.ASMより)

;Allocate Segment
;入力：AXにセグメントアドレス
;出力：AXにコードセグメントセレクタ、BXにデータ
セグメントセレクタ
; Cにエラー

PUBLIC ALLOC_SEG
ALLOC_SEG:
$IF <CMP MMTYPE,4>,E
...
RET
$ENDIF
$IF <CMP MMTYPE,3>,E
...
RET
$ENDIF
MOV BX,AX
CLC
RET
図12 現在のモードに適したセグメントセレクタを返すサブルー

チン (CONFIG.ASMより)

ムを作ったり、ツールの想定とは異なる環境で動作す

るプログラムを作ったりするのにも役立つ。

複数の環境の例として、リアルモード☆1とプロテク

トモード☆2の両方で動くプログラムを書くためのサブ

ルーチンを図12に紹介する。メモリ管理の種類を表

☆1 x86で、初代の8086と互換性のあるモードである。セグメント
レジスタの値が16倍されて物理アドレスの計算に使われる。

☆2 セグメントの保護が使えるモードで、セグメントレジスタの値
(セグメントセレクタ)は、セグメントの番号と特権レベルを表
す。

す変数MMTYPEの値は、図11の4つの方式に対応して

いる。3または4なら、VCPIまたはDPMIであり、プ

ログラムはプロテクトモードで実行されている。サブ

ルーチンは、メモリ管理に応じた方法で、必要ならセ

グメントを割り当て、セグメントセレクタを取得して

返す。このサブルーチンがあれば、リアルモード専用

だったプログラムを、プロテクトモードでも動くよう

に書き換えることができる。

次に紹介するのは、16ビットコードで64KBの壁が

あった頃に有効だったテクニックである。プログラム

が大きくなって、一つのセグメントに入りきらなくな

ると、複数のセグメントに分けなければならない。そ

のとき、すべてのサブルーチンをnear☆3から far☆4に

変えるのはたいへんなので、多くの場合にnearですむ

ようにうまく分ける。それでも残る、異なるセグメン

トからの呼び出しには、nearサブルーチンに皮をかぶ

せて farサブルーチンに見せかけたり、呼び出し元の

セグメントのnearサブルーチンに見せかけたりする。

図13は後者の例である。マクロ定義で作った見

☆3 同じセグメントから呼ばれるサブルーチンの属性で、nearリター
ン命令で終わる。

☆4 異なるセグメントから呼ばれるサブルーチンの属性で、farリ
ターン命令で終わる。nearコール/リターンより時間がかかる。

FAR_TEXT SEGMENT DWORD PUBLIC ’CODE’ USE16

ASSUME CS:FAR_TEXT,FS:DGROUP

TO_NEAR MACRO ADDR
PUBLIC FAR_&ADDR

FAR_&ADDR:
MOV TO_NEAR_OFFSET,OFFSET ADDR
JMP TO_NEAR_CALLER
ENDM

TO_NEAR CONS
TO_NEAR EQUAL
TO_NEAR LPUT
TO_NEAR APPEND
TO_NEAR CELL
TO_NEAR MKATOM_OPEN
TO_NEAR MKATOM_WRITE1
TO_NEAR MKATOM_CLOSE
TO_NEAR SEARCH_ATOM

TO_NEAR_CALLER:
CALL TO_NEAR_ADDR
RET

TO_NEAR MKARRAY
TO_NEAR GET_ARRAY_ELEMENT
TO_NEAR SET_ARRAY_ELEMENT
TO_NEAR ARRAY_SIZE
TO_NEAR MKHEAP
TO_NEAR RESIZE_HEAP
TO_NEAR CHECK_HEAP
TO_NEAR GCOLL
TO_NEAR SCAN_CELL

FAR_TEXT ENDS

図13 CELL.ASMのサブルーチンに皮をかぶせる
(FARCELL.ASMより)

;Macro Definition

SET_BASE_ADDR MACRO
LOCAL RIP_BASE
DB 48H,8DH,2DH ; LEA RBP,[RIP+0]
DD 0
RIP_BASE:
REX_W <SUB RBP,OFFSET RIP_BASE>
ENDM
図14 RBPに値を設定するマクロ定義 (MONITOR.ASMより)

せかけのnearサブルーチンは、メモリに呼びたい

サブルーチンのオフセットアドレスを書き込んで、

TO NEAR CALLERにジャンプする。するとそこの命令

CALL TO_NEAR_ADDR(1)が、呼び出し先のセグメント

にある farサブルーチンTO NEAR CALL(2)を呼び、そ

れがさらに、目的のnearサブルーチンを、先ほどメモ

リに書いたアドレスを使って呼ぶ。なお、(1)と (2)で

名前が異なっているのは、(1)は実はメモリ上の変数で、

呼び出し先のセグメントセレクタを図12のALLOC SEG

ルーチンで計算して、(2)のオフセットとともに、あ

らかじめ (1)に書いておくためである。

最後に、AMD64アーキテクチャ☆のプログラムを、

x86にしか対応していないアセンブラで書くための

☆ x86をほぼそのまま64ビットに拡張したもので、64ビットレジ
スタはRAXなどの名前になる。IntelのEM64Tも、これとほ
ぼ互換である。

;RBPには常に、セグメントベースアドレスを入
れておき、オフセットアドレスをリニア
;アドレスに変換するために使う

PUBLIC START
START:
CLD
SET_BASE_ADDR
;スタック
REX_W <LEA RSP,STACK0_BOTTOM[RBP]>
;TSS
REX_W <MOV QWORD_ PTR TSS[04H][RBP],RSP>
REX_W <MOV QWORD_ PTR TSS[0CH][RBP],RSP>
REX_W <MOV QWORD_ PTR TSS[14H][RBP],RSP>
MOV WORD PTR TSS[66H][RBP],68H

図15 64ビットのスタックポインタとTSSの初期化
(MONITOR.ASMより)

テクニックを紹介する。AMD64では、アドレスは64

ビットであるが、64ビットのアドレスを直接指定し

てメモリを読み書きできる命令は限られている。x86

で32ビットアドレスを直接指定する命令はたいてい、

AMD64ではRIP(プログラムカウンタ)相対と解釈さ

れてしまう。そこで、RBPに適当な値を入れておき、レ

ジスタ間接でメモリにアクセスすることにする。RBP

に入れるべき適当な値とは、アセンブラが思っている

アドレスと実際のアドレスの差である。図14のマク

ロを使えば、プログラムを好きな番地にロードしても、

正しく設定される。図15では、このマクロを使って

スタックポインタを初期化したり、TSSに値を設定し

たりしている。

5. ま と め

アセンブリ言語でプログラムを書くのは楽しい。高

級言語のプログラマには隠されている、すべての情報

を見ることができるし、効率的なプログラムを書く努

力は、できあがるプログラムコードに直接反映される。

アセンブリ言語はまた、意外と長寿命である。高級

言語の変遷と比べて、プロセッサファミリの命令セッ

トの変化がそれほど多いわけではないし、もちろん互

換性 (それもバイナリレベルの互換性)は普通保証され

る。30年後にx86とC言語のどちらが生き残っている

かは容易に断言できない。

そしてもちろん、アセンブリ言語を使えば、まだ高

級言語の処理系が用意されていないプロセッサや、高

級言語からは利用の難しい拡張機能など、最先端の技

術をすぐにでも利用することができる。

皆さん、アセンブリ言語を使いましょう。

質疑応答 (敬称略)

浜田 昔アセンブリ言語を使ったときは、開発効率が

悪いと思ったが、この発表では、アセンブリ言語

の見方がずいぶん違う。

２　カーネル
２．１　CONFIG.ASM

　CONFIG.ASMでは、CONFIG.3Dの処理のほか、CPUのチェック、メモリの取得、浮動小数点演算環境の設定
などを行う。
２．１．１　メモリ管理
　メモリ管理はBIOSワークエリア（ドライバなし）、XMS、VCPI、DPMIの４つの方式に対応しており、後
のものから優先して使用する。CPUが仮想8086モードのときには、VCPIとDPMIのみが使用できる。BIOS、
XMSでは、4GBまでアクセス可能に設定したリアルモードで実行される。VCPI、DPMIではプロテクトモード
（16ビットセグメント）で実行される。
　4GBまでアクセス可能に設定したリアルモードとは、セグメントリミットに4GBを設定したままプロテク
トモードからリアルモードに戻ったときに起きる特殊な状態である（仮想8086モードではこの状態にでき
ない）。実際には、セグメントリミットを越えてメモリアクセスしたときに起きる割り込み0Dh（擬似保護
例外）のハンドラでこの設定を行っているため、レジュームなどでセグメントリミットが元に戻ってしまっ
ても動作を続行できる。
(中略)

２．２　コーディング上の注意点
　ここで、カーネル部のコーディングで注意するべき点を述べる。メモリ管理や浮動小数点演算がどの方式
であっても動くようにするために、注意、制限があったり、CONFIG.ASMのルーチンや変数を使う必要があっ
たりする。
２．２．１　セグメント
　セグメントセレクタは、直接計算してはいけない。DGROUPならWORK SEGを、 TEXTならCSを、 STACK

ならSSを、32ビットアドレス空間ならFLAT SEGを用いる。これ以外のセグメントが必要なら、ALLOC SEG

ルーチンを呼ぶ。
図11 カーネル部の説明 (一部)

著者 ありがとうございます。

湯浦 (日立製作所)(座長) 書く前に規約を考えている

ところが楽しいのではないか。

著者 書きながら呼び出し規約を改良していくところ

が楽しい。

近山 (東大) リンカが好きなことをさせてくれない。

外部参照アドレスを2bitシフトした値を使いたい

ことがあって困った。

著者 普通は実行時にシフトして使うが、どうしても

いやなら自己書き換えという方法もある。

多田 (電通大) 人々はなぜアセンブラを使わないのか

と思った。

著者 私の布教が足りなかった。

和田 (IIJ) Knuthは実行時間を正確に、O(n)の係数

まで見積もるために、アセンブラ (MIX)を使う。

Knuthも布教をがんばって欲しい。組み込みは?

清木 (任天堂) 最近はC言語。

和田 堕落した。

紀 (KLS研究所) IBMの370にも構造化マクロがあ

り、抽象度を上げていくと、370の命令を書かな

くてよくなった。そこで他の機種に持って行こう

としたが、アセンブラに依存していた。アセンブ

ラも書いてはどうか。

著者 アセンブラも作っている。

和田 森口先生のマシン独立アセンブラSIPはどこで

も動く。しかし能率が悪いので機種別になった。

参 考 文 献

1) 編集部,西村卓也.アセンブラMACROプログラ
ミング (1) 構造化アセンブラMACRO (Control

Logic Structure Macro)をつくる, 月刊アスキー,

Vol.10, #7, pp. 165–170, 1986年7月号.

2) 編集部, 西村卓也. アセンブラMACROプログ
ラミング (2) 標準入出力MACRO (Standard In-

put/Output Macros)をつくる, 月刊アスキー,

Vol.10, #8, pp. 213-218, 1986年8月号.

3) 編集部,西村卓也.アセンブラMACROプログラ
ミング (3) データ形式変換と文字列操作, 月刊ア
スキー, Vol.10, #9, pp. 197–198, 1986年9月号.

4) 西村卓也, 寺沢任弘. アセンブラMACROプ
ログラミング 第4回 C言語インターフェイス
MACROS,月刊アスキー, Vol.10, #10, pp. 189–

192, 1986年10月号.

5) 矢部和博. アセンブラMACROプログラミング
第5回 構造化アセンブラMACROによるRAM

ディスクドライバ, 月刊アスキー, Vol.10, #12,

pp. 209–213, 1986年月12号.

6) SYSTEM V APPLICATION BINARY IN-

TERFACE Edition 4.1, The Santa Cruz Op-

eration, Inc. and AT&T, 1997.

(http://refspecs.freestandards.org/)

