
複数OSが共有するサービスのインタフェース

藤 波 順 久†

コンピュータシステムの基本的なサービス、例えば時刻や時間、キー入力などは、OSやその上のシ
ステムライブラリで管理するのが普通である。しかし複数OSのユーザは、タイムゾーンの設定、キー
入れ替えなどをOS毎に行わなければならず、プログラミングの際にも異なるモデルとインタフェー
スの理解が必要になる。本稿は、この問題を解決するインタフェースを提案する。

Interface of Services Shared by Various Operating Systems

FUJINAMI Nobuhisa†

Basic services of computer systems, such as time and keyboard input, are commonly man-
aged by operating systems or system libraries on them. Then users of multiple operating
systems must set up time zones, keyboard key exchange, etc. for each operating system.
When programming, they must comprehend specific models and interfaces. This article pro-
poses an interface to resolve these issues.

1. は じ め に

コンピュータシステムの基本的なサービス、例えば
時刻や時間、キー入力などは、OSやその上のシステ
ムライブラリで管理するのが普通である。しかし、一
台のコンピュータで複数のOSを切り替えて使ってい
るユーザは、タイムゾーンの設定、キーボードのキー
入れ替えなどをOS毎に行わなければならない。また、
複数OSを扱っているプログラマは、そのOS毎に異
なるモデルとインタフェースを理解してプログラミン
グを行う必要がある。
このような問題が起きる原因は、インタフェースを

OSの上 (アプリケーション寄り)に構築してしまった
ことにある。一種類のOSを複数のアーキテクチャの
マシンで動かすという状況では、このような構成は非
常に有効であった。しかし、現代のパソコンのように、
(Macintoshを含めて)単一のアーキテクチャにほぼ統
一されている状況では、OSの作者はOSを作るたび
に同じような (アーキテクチャの欠点を隠す)プログラ
ミングが必要になる上、OSのユーザに上記のような
不便を強いる。
本発表で提案するインタフェースは、OSの下 (ハー
ドウェア寄り)に構築される。そもそも、多数のOSに
共通する基本的なサービスならば、OSより下の階層
に構築されるべきものである。今までそれが実現でき
なかったのは、OSの下の階層は、ハードウェアそのも
のか、ファームウェア (BIOS)の薄い層であり、ハー

† 株式会社ソニー・コンピュータエンタテインメント
Sony Computer Entertainment Inc.

ドウェアの癖を隠せるほど充実したサービスを提供で
きなかったからである。
現代の仮想マシン技術を用いれば、OSの下に充実
したサービスを提供し、OS(のドライバ)は単にそれ
をOSのインタフェースに変換するだけという方法が、
現実的なものとなる。本発表では、いくつかの基本的
なサービスについて、どのようなインタフェースを用
意するべきか検討し、その効果について考察する。

2. 動 機

IBM PCでOSを経由せずに時刻を知りたい場合、ど
のような方法があるだろうか。調べたところ☆、BIOS

の時刻サービスは次のように2系統あることがわかっ
た。
• SYSTEM TIME

– 夜中の0時からの時間、および0時を過ぎた
かどうかのフラグ

– 時間の単位は、毎秒約18.2回 (65536/1193180

秒間隔)の clock tick

• REAL-TIME CLOCK

– 年月日 (年は4桁)

– 時分秒 (秒単位まで)およびサマータイムフ
ラグ

通常は、起動時に後者を読み込んで前者を初期化
し☆☆、以後は前者だけを使う (日付はフラグを見て使う

☆ 例えばRalf Brown’s Interrupt List http://www.cs.cmu.

edu/˜ralf/files.htmlの1A00～1A03。
☆☆ 初代 IBM PCでは、後者がなかったので、DOSの起動のたび
に人手で日付と時刻を入力していた。



側が管理)。clock tickが半端な間隔なので、1日の長さ
(clock tickの1573040回ぶん)は23時間59分59.998

秒となる。このずれは、1日の最後の1秒を約2ms短
くすることで処理されている。つまり、そもそも仕様
として1日の長さが変である。
最近のマシンでは、他にCPUのTime Stamp

Counter1)、APIC Timer1)、マザーボードのHigh

Precision Event Timer (HPET)2)、ACPI Power

Management Timer3)を使い分ける。
OS上のプログラムでは、プログラマへの時間の見
せ方はOS毎に似て異なる。例えば、プロセスの実行
時間を得る場合、
Unix: getrusage

Windows NT: GetProcessTimes

Windows 9x: QueryPerformanceCounterの差で
計算 (プロセスの時間ではなく経過時間)

Windows 2.x～3.1: GetTickCountの差で計算 (49

日でラップアラウンド)

のような違いがある。高級言語、例えばC言語で使
う場合は、標準ライブラリのclock関数でラップされ
ているので、下請け関数の名前の違いは知らなくて
よい。しかし、ふるまいは違うことがある (特にWin-

dowsの古いライブラリを使う場合)ので、意識する必
要がある。
講演では述べなかったが、MS-DOS上のプログラ
ムを使うだけで、IBM PCの clock tickの半端さを意
識させられたことがある。時刻を設定した直後に時刻
を読み出すと、設定した時刻以降の値が読み出される
ことを普通は期待する。しかし、IBM PCではそうな
らず、例えば10時00分に設定すると、clock tickの倍
数に切り捨てられて9時59分59.981秒となってしま
う。そのため、NEC PC-9800シリーズのMS-DOSで
正しく動いていたプログラムが誤動作してしまった。
キーボードのキーコード (スキャンコード)につい
ても、調べてみるといろいろな複雑さがある☆。そし
て、OS上でキーボードの配列を設定する方法も、一
つのUnix系OS(例えばFreeBSD)でもコンソールの
設定、XFree86(PC用のXサーバ)の設定、そしてX

Window System上での設定の3通りがある。
このように、ハードウェアに癖があるのと同様に、

OS上のサービスにも癖がある。

3. 個々のインタフェースの検討

本節では、OSの下にインタフェースを構築し、癖
のないハードウェアに見せかける方法を、個々のサー
ビスについて検討していく。
ここでは、インタフェースは I/Oポートとする。ソ
フトウェア割り込みを使ったハイパーバイザコールに
してもよいのだが、そうすると何かあったときに直接

☆ 例えばhttp://www.skyfree.org/jpn/unixuser/の「スキャン
コードは３度変貌する」を参照

操作できるような穴を開けたくなる。I/Oポートにす
ればそのような誘惑を断つことができる。また、それ
ならハードウェアの I/Oポートを隠蔽するのに自然で
あり、将来実ハードウェアを作れる可能性にも期待で
きる。

3.1 時刻・時間サービスの場合
時刻・時間サービスを大きく分けると、年月日、時
分秒という、時刻を表すものと、ある時刻からの経過
時間を表すものに分けられる。両方を持つハードウェ
アやOSもある。OSの下にサービスを構築する場合、
どちらか一方だけで済ませることができれば、実装が
簡単になる。
しかしながら、時刻・時間をきちんと管理しようと
すると、一方だけではうまくいかない場合がある。例
としてまず、録画予約をする場合を考えてみよう。予
約したい時刻が表しているのは、普通の人が用いる
年月日、時分秒であり、閏秒があったり、ユーザが時
刻合わせをしたりすれば、それに連動するべきもので
ある。
別の例として、スクリーンセーバ用のタイマを考え
てみよう。設定時間が表しているものは、ユーザが最
後に入力デバイスを操作してからの経過時間であり、
時計が遅れているから10分進めたのに連動して短く
なるべきものではない。この問題を避けるため、Unix

系のadjtimeシステムコールのように、時計の進みを
1%程度早めたり遅くしたりすることで、時間をかけ
て時刻を合わせる機能を持つOSもある。スクリーン
セーバ用のタイマなら1%程度ずれても問題ないかも
しれないが、例えばプログラムの実行時間を計測して
いたとしたら、許容できないだろう。
結局、両方のサービスが必要である。ここではそれ
を、カレンダ時計とシステムタイマと呼ぶ。カレンダ
時計は、コンピュータの電源のon/offに関係なく、常
に進み続けることが期待される。また、ユーザが時刻
を設定することで時刻がずれる可能性がある。一方、
システムタイマは電源を入れるたびに初期化されてよ
い。しかも、ユーザが値を設定することはないとして
よい。
ノートPCのように、サスペンド・レジューム機能
を持つ場合はどうであろうか。カレンダ時計はもちろ
んサスペンド中も進むべきである。実行中のプロセス
にとっては、時刻が突然進んだように見える。一方、
システムタイマはサスペンドしたときの値から再開す
るべきである。サスペンドと似た機能として、マルチ
プロセスのOSでは、そのプロセスが実行されている
間だけ進むタイマがあると便利だが、プロセスはOS

の持つ概念であり、本サービスでは提供できない。
二つのサービスを提供することで、以下のような利
点もある。
• カレンダ時計とシステムタイマで別々の精度の表
現を利用できる。例えばカレンダ時計は精度を粗
くする代わりに遠い過去や未来を表現できる形式



にしてよい。
• カレンダ時計は通しの秒数ではなく、年月日、時
分秒の形式で管理できるので、いつ閏秒が挿入さ
れたか、(地方時の場合は)夏時間の規則がいつ変
更されたかを記録しておかなくても、時刻を表示
できる。
閏秒について補足しておく。Unix系のOSでは普通、
時刻を1970年1月1日0時からの通しの秒数で管理し
ている。しかし、POSIXでは閏秒を扱わないことに
なっているなど、閏秒まで実装しているものは少な
い。NTP (Network Time Protocol)は閏秒を扱える
が、閏秒の間は時刻が進まない (非常にゆっくり進む)

ようになっている。従ってたいていは、閏秒で挿入さ
れた1秒間に起きたことの時刻を正確に表現できない。
現在のパソコンの時計の精度では、閏秒を時計の誤差
と同じに扱っても実用上はあまり問題ないが、そもそ
もその時刻を表現できないのは仕様として変である。

IBM PCに特有の問題として、夏時間がある。MS-

DOSおよびWindowsでは、ハードウェアクロック
(IBM PCのハードウェアに内蔵されている時計をこ
こではそう呼ぶ)を地方時に合わせることになってい
る。夏時間のある地方では、夏時間の始まりと終わり
で、ハードウェアクロックをずらさなければならない。
Windowsには、これを自動的に行う機能がある (夏時
間のあるタイムゾーンに設定すると、[自動的に夏時
間の調整をする]というチェックボックスが現れる)。
提案するサービスで動くOSと既存のWindowsを共
存させるためには、ハードウェアクロックを地方時に
合わせる必要があるので、これに対処しなければなら
ない。
実は、IBM PCのハードウェアクロックには、夏時
間によって時刻を自動的にずらす機能があるが、以下
の理由により、現在では使い物にならない。
• 組み込まれているのはアメリカ合衆国の夏時間の
規則なので、他の国では異なる可能性がある。

• アメリカ合衆国の夏時間の規則は2007年から変
わっている。
さらに悪いことに、現在ハードウェアクロックが夏
時間を示しているかどうかを区別するフラグは、ハー
ドウェアには存在しない。そのため、Windowsを含
む複数のOSを切り替えて使うPCでは、一つのWin-

dowsでだけ [自動的に夏時間の調整をする]を有効に
し (複数で有効にすると重複してずらされてしまう)、
これを無効にしているWindowsを含む他のOSでは、
時刻が1時間ずれる場合があるのを我慢するという使
い方をよく見る。
ここまで来てわかるのは、機能が不足しているサー
ビスの上にいくら工夫を重ねても、問題はあまり解決
しないということである。間違いは、提案するサービ
スと既存のWindowsを同列で共存させようとしたこ
とにある。根本的に解決するには、提案するサービス
の上でWindowsを動かせるような仮想マシンを作れ

0050h QWORD R システム・タイマ・カウンタ読み出し
0058h WORD RW カレンダ時計:ミリ秒(書き込みは
0159h参照、以下同様)
005Ah BYTE RW カレンダ時計:分
005Bh BYTE RW カレンダ時計:時
005Ch BYTE RW カレンダ時計:日
005Dh BYTE RW カレンダ時計:月
005Eh WORD RW カレンダ時計:年
0150h BYTE RW システム・タイマ制御
0158h BYTE RW カレンダ時計制御
0159h BYTE R カレンダ時計ロック
成功すればbit7が1の値が返る カレンダ時計設定でロッ
ク開放
0159h BYTE W カレンダ時計設定(0058-005Fにラッチ
されていた値に設定)
bit0-5がミリ秒、分、…に対応し、1なら設定、0なら捨
てる
015Ah WORD RW カレンダ時計:時差(分単位)
015Ch DWORD R カレンダ時計設定回数(排他制御用)
0250h QWORD RW システム・タイマ割り込み周期
0258h WORD RW カレンダ時計割り込み:ミリ秒
025Ah BYTE RW カレンダ時計割り込み:分
025Bh BYTE RW カレンダ時計割り込み:時
025Ch BYTE RW カレンダ時計割り込み:日
025Dh BYTE RW カレンダ時計割り込み:月
025Eh WORD RW カレンダ時計割り込み:年

図1 PC-A801の時刻・時間サービスの I/Oポート

ばよい。
それではここで例として、著者が作成中のPC-A801

エミュレータの時刻・時間サービスのインタフェース
である、I/Oポートを図1に示す。講演時には、時刻
を地方時にするか協定世界時 (UTC)にするか迷って
いた。地方時の便利な点は、将来的に閏年の規則が変
更された場合でも、現在の日付を正しく取得できる
(例えば協定世界時の2月28日18時が日本標準時☆の
2月29日3時か3月1日3時かを計算しなくてよい)こ
とである。しかしながら、閏年の規則の寿命よりも、
64ビットアドレス空間の限界によるPC-A801の寿命
のほうが短いかもしれないと考え直し、時刻は協定世
界時とすることにした。夏時間を含めて地方時と協定
世界時との時差も管理する。
時間および時刻は、使用するすべての桁を同時に読
み出さないと意味がないので、I/Oポートを利用する
場合は注意が必要である。例えば、年月日と時分秒を
別々に読み出す場合、年月日を読み出した直後に日付
が変わってしまうと、24時間近くずれた時刻が読み
出されてしまう。x86プロセッサの I/O命令では、32

ビットまでしか同時に読み出せないので、例えば年月
日、時分秒、年月日の順に読み出して、年月日が一致
していることを確認するなどの手順が必要である。

3.2 キーボードの場合
通常の使い方であれば、どのキーが押されたかと、そ
のときのシフト状態がわかればよさそうである。サー
ビス側でキーリピートに対応するなら、キーが繰り返
し押されたことにすればよい。通常ではない (楽しい)

☆ 法令上ほぼ同じなのは中央標準時 http://www.geocities.jp/

nakanolib/rei/rm28-167.htm



使い方として、ゲームの入力がある。方向キーを押し
ている間だけその方向に進み、離したら止まるような
制御をしたいことがゲームではよくある。この場合は、
対象となるキーが押されているか、離されているかを、
好きなときに取得できる必要がある。
それでは、この2種類のサービスをどちらかだけで
済ませることができるだろうか。実際のキーボードの
ハードウェアでは、一方のサービスしか提供されない
のが普通であり、一方だけで済ませることは可能であ
るが、多少の困難を伴う。
前者でキーが押されたことのほかに離されたことも
わかるようにすれば、各キーが押されているかどう
かはすべてわかりそうだが、少しだけ問題がある。リ
セット直後の状態を知るには、そのときに押されてい
るキーがもしあれば、短時間で順番に押された扱いに
すればだいたいよいのだが、この順番と実際にキーが
押された順番が異なる可能性がある。そもそもいつ押
されたのかわからないのだから、入力があったことに
するべきではないかもしれない。サスペンド・レジュー
ムの場合にも似た問題がある。
一方、各キーについて押されているかどうかがわ
かれば、その状態変化を一定の間隔で調べることで、
キーが押されたタイミングを検出することができる。
しかしそのためには、タイマ割り込みなどの別のサー
ビスを使うか、アプリケーションからポーリングする
必要がある。
ここでは利便性のために両方のサービスを提供する
ことにする。それを、キー状態変化とキー押下状態と
呼ぶ。キー状態変化では、キーコードと、キーが押さ
れたか離されたかの区別が返される。状態変化は非同
期で起きるので、割り込みで状態変化を通知できるよ
うなサービスが必要である。一方、キー押下状態の変
化はまさに、キー状態変化サービスで通知されている
ので、キー押下状態は現在の値を返すサービスだけで
十分である。
キーの入れ替えでよくあるのが、CtrlキーとCaps

キーの入れ替えのように、物理的なキーをそっくり入
れ替えたいという要求である。キー状態変化とキー押
下状態の両方を入れ替えることに気をつけさえすれ
ば、サービスへの実装は容易であろう。そうではなく、
シフトした状態に依存して入れ替えるような場合は、
キー押下状態との整合性をとるのが難しい。特殊キー
ではOSに特有の処理が必要と予想されるので、これ
らはあきらめてOS側のサービスとして実現してもら
うことにする。
キーボードには実は出力もある。シフト状態を示す
インジケータである (メカニカルロックのキーボード
では不要であった)。自由度を考えて、ユーザ側でイ
ンジケータのon/offを制御できるようにする。
図2に I/Oポートの例を示す。講演ではさらに、キー
リピートの動作について表1のように比較した。そも
そも普通のキーにキーリピートは必要かという疑問も

0000h BYTE R キーボード・マトリクス 0
: : : :

000Fh BYTE R キーボード・マトリクス15
0100h BYTE R キーボード・シリアル通信
0101h BYTE RW キーボードLED制御

図2 PC-A801のキーボードサービスの I/Oポート

あり、どうあるべきかの結論はまだ出ていない。
別の問題として、他の入力デバイスとの同期につい
て触れておく。例えばマウスの操作で、シフトキーを
押しながらクリックすると、通常のクリックとは異な
る動作をするアプリケーションがある。もしクリック
したタイミングと、それをアプリケーションが受け取
るタイミングにずれがあると、シフトキーが押されて
いるかどうかが違ってしまうことがある (Windowsで
経験した)。もしサービス側で入力のバッファリング
を行うなら、同期が必要な他の入力デバイスの情報も
いっしょにバッファリングする必要がある。

4. 関連技術と考察

OSの下にサービスを構築する例は、もちろん従来
からある。本節ではそれらをいくつか紹介し、提案す
るインタフェースと比べることでその効果を考察する。

4.1 FM-8のキーボード
FM-8は、1981年に発売された富士通製の8ビット
パソコンである。8ビットCPUをメインとサブの2個
搭載し、画面はサブCPUが管理していた。キーボー
ドは、サブCPUに接続された4ビットマイコンが管
理していた。これには問題があり、キーが押されたこ
とはサブCPUに通知されるが、離されたことは通知
されない。ユーザがプログラムを送り込めるのはサブ
CPUまでで、4ビットマイコンのファームウェアは変
更できない。そのため、FM-8のゲームでは、キーを
離しただけでは動きが止まらず、止めるためのキーを
押す必要があった。
これは、ハードウェアで厚い層を作りすぎて失敗し
た例と考えられる。

4.2 BIOS

BIOS (Basic Input/Output System)は、元々は
CP/M☆の用語☆☆で、機種依存部分 (デバイスドライ
バ)をまとめたものであった。
その後 (1980年代以降)、NECのPC-9800シリー
ズ、IBM PCなどのROMに搭載されている、ハー
ドウェアの制御プログラムもBIOSと呼ばれる。拡張
ボード (ハードディスクインタフェースボードなど)を
装着すると、それの制御用のBIOS ROMが追加され
る。OSやアプリケーションは、ソフトウェア割り込

☆ 1970年代にデジタルリサーチが開発した8ビットCPU用のOS
☆☆ チャットで「神代の時代から」というコメントがあったが、著者には

CP/Mより古い使用例を見つけられず、Wikipediaでも「The

term first appeared in the CP/M operating system」と
なっている (http://en.wikipedia.org/wiki/BIOS)。おそら
くこの用語として定着したのがCP/Mからだったのではないか。



機種 インタフェース 途中でシフトキーを押す 途中でシフトキーを離す
NEC PC-8001/8801 キー押下状態 yyyyyyyyyyyyyyyy YYYYYYYYYYYYYYYY

NEC PC-9801 キー状態変化 yyyyyyyyYYYYYYYY YYYYYYYYyyyyyyyy
IBM PC PS/2キーボード キー状態変化 yyyyyyyy YYYYYYYYyyyyyyyy

著者のPC-A801 両方 yyyyyyyy YYYYYYYY
表1 キーリピートの比較

みを使ってその機能を呼び出す。IBM PC系では、起
動時の処理や起動画面、設定画面なども含めてBIOS

と呼ぶようだ。
BIOSは、ハードウェアの細かい違いや、プロセッ
サの速さによる I/Oウェイトの数の違いを吸収する役
割を果たしていた。N88-BASIC(86)☆1も、CP/M-86

も、MS-DOSも、BIOSで機種依存部分を (ある程度)

隠していた。PC-9800シリーズと IBM PCのBIOSは
互換性がないが、SIMというソフト☆2で IBM PCの
BIOSをシミュレートすることで、MS-DOS汎用では
ない IBM PCのアプリケーション (一部にパッチが必
要)を動かすことができた。
今では、OSのインストール時・起動時にだけ使う
もので、プロテクトモードで動作するOSの起動後は
使われないものになってしまった。

BIOSは、OSの下にある点や目的は提案するインタ
フェースに似ているが、薄い層であり、その効果は限
定的である。

4.3 USBレガシーキーボード
USBレガシーキーボードは、USBキーボードしかな
い IBM PC系のマシンで、BIOS設定画面やMS-DOS

を使うための、BIOSとチップセットの機能である。
USBキーボードからの入力を使ってPS/2キーボード
をエミュレートする。PS/2キーボードの I/Oポート
(60hと64h)をアクセスすると、Intel ICH4)の機能に
よりSMI (System Management Interrupt)がかかる
ので、BIOSの持つSMIハンドラで処理する。
この機能は、SMM (System Management Mode)

で動くので、プロテクトモードや64ビットモードでも
使え☆3、ほぼ完全なエミュレーションになっている。
ソフトウェアからの見え方としては、提案するインタ
フェースに近い。違うのは、整理されたインタフェー
スにするのではなく、複雑なスキャンコードをそのま
まエミュレートしているところである。

USBレガシーキーボードの問題点としては、機能を
有効にしていると、1秒に1回くらい、0.3ms程度の

☆1 PC-9800シリーズに搭載されているBASIC言語の名前である
が、そのインタプリタは言語の実行環境であるだけでなく、OS

のような役割も果たしていた。
☆2 http://www.vector.co.jp/soft/dos/util/se002710.html
☆3 USB接続のフロッピーディスクドライブを従来のフロッピーディ
スクドライブに見せる機能を持つBIOSも多いが、これはソフ
トウェア割り込みのレベルでのエミュレーションであり、I/O

ポートを直接操作するプログラムからは認識できないし、プロ
テクトモードでは、リアルモードまたは仮想8086モードに切り
替えてからBIOSを呼び出す必要がある。

間処理が止まることが挙げられる。通常のソフトウェ
アからはSMMの動作を制御できないので、処理が止
まっている間はどうしようもない。

4.4 EFI

EFI (Extensible Firmware Interface)5)は、現在は
Unified EFI (UEFI)として規格化されている。通常
のユーザにとっては、Mac OSの起動に使われるブー
ト・マネージャとして、ミニOS(MSIのP35 Neo3-

EFINITYというマザーボードは付属のゲーム、シェ
ルをEFIから起動できる)として、あるいは、GUID

Partition Table (GPT)という、2TBを超えるディス
クのパーティション管理に使われる方法を含む規格と
して知られているであろう。
その実態は、Boot ServicesとRuntime Services

を提供するFirmware Coreと、3種類のEFI Im-

ages (EFI Applications、EFI OS Loaders☆4、EFI

Drivers)から構成される。特徴としては、プロテクト
モードで動作すること、起動に必要なブロックデバイ
スやファイルシステムにアクセスできること、設定・
起動に必要なキーボード入力、マウス入力、文字出力、
グラフィクス出力に対応することが挙げられる。設定・
起動の際 (OSの起動前)には自国語のメニューやメッ
セージが使える。イメージ読み込みに関する機能は非
常に充実しており、SCSIやUSBを含む各種のドライ
ブやネットワークに対応する。
もし自国語対応をOSの上の層で行うと、OSの起動
前のシステムセットアップメニュー (BIOS設定画面)

やブートセレクタでは、英語表示で我慢するか、それ
ぞれが独自に自国語対応する必要があった。EFIはこ
の点では提案するインタフェースの代わりになりそう
で期待できる。

EFIの弱点は、シングルプロセッサで動作し、デバ
イスドライバで割り込みが使えないことである。それ
だけでなく、OSのロード後は限られた機能しか使え
ないという、最大の弱点があることがわかった (表2)。
これでは代わりにならず、たいへん残念である。

4.5 仮想マシンのホストOS

VMWare、Virtual PCなどの仮想マシンソフトの
ユーザについて考えてみる。仮想マシンの上で動くゲ
ストOSから見れば、ホストOSはOSの下の階層に当
たる。そこで、キーカスタマイズ、夏時間の調整など
の基本的な設定はホストOSで行い、(複数あるかもし
れない)ゲストOSでは設定をいじらないようにすれ

☆4 EFI Applicationsの一種だが、EFIのBoot Servicesを終了
してOSに制御を移す。



Name Description

GetTime() Returns the current time, time context, and time keeping capabilities.

SetTime() Sets the current time and time context.

GetWakeupTime() Returns the current wakeup alarm settings.

SetWakeupTime() Sets the current wakeup alarm settings.

GetVariable() Returns the value of a named variable.

GetNextVariableName() Enumerates variable names.

SetVariable() Sets, and if needed creates, a variable.

SetVirtualAddressMap() Switches all runtime functions from physical to virtual addressing.

ConvertPointer() Used to convert a pointer from physical to virtual addressing.

GetNextHighMonotonicCount() Subsumes the platform’s monotonic counter functionality.

ResetSystem() Resets all processors and devices and reboots the system.

表2 Runtime Servicesの一覧 (文献5)より)

ば、設定を各OSで行う必要があるという問題を、提
案するインタフェースを使わなくても緩和できる。

OS依存のプログラムを書く頻度はそれほど高くな
いとすれば、実はこれだけでいいとも言える。つまり、
IBM PCの複雑さをそのままエミュレートしていると
か、エミュレートのためにわざわざOSを動かしてい
るという点を除いて考えれば、OSの下にインタフェー
スを構築して、(ゲスト)OS非依存で行うという目的
は達している。仮想マシンソフトのユーザならもうみ
んなやっているのかもしれない。

5. ま と め

IBM PCのハードウェアは難しい。OSを作ろうと
したり、OSなしで起動するプログラムを作ろうとし
たりすると、難しさに直面する。OS上のプログラム
であっても、ハードウェアの知識が必要とされること
もある。誰かががんばって、単純化したハードウェア
に見せかけるようにしてほしい。そして、その上でみ
んながOSを作るようになれば、プログラマの人生も
単純になるであろう。

質疑応答 (敬称略)

田中 (産業技術総合研究所) このサービスはサーバで
は使えない。ユーザごとに時差を変える必要が
ある。

著者 例えばプロセスごとに時差を変えたいのであれ
ば、OSをそのように作ればよい。そのために必
要な情報を提供するのが、提案するインタフェー
スの役目である。提供するのを (夏時間でない)地
方時にするか協定世界時にするかは迷っている。

田中 地方時の場合は時差も取得できるようにしてほ
しい。

著者 もちろんそうする。
多田 (電気通信大学)(座長) 結局リッチなサービスを
作らなければならないのではないか。例えばNFS

でマウントする場合には、マウントされるファイ
ルシステムの機能をすべて仮想化しないと、使え
ない機能が出てくる。

著者 NFSでも例えば暗号化はその上で行うことも

できる。提案するインタフェース上にいろいろな
機能を構築できるようにしたい。

多田 チャットで、特定の時刻に起動したいという話
が出ていた。

著者 それは3.1節のサービスだけでは無理で、時刻
を指定して起動するサービスを用意する必要が
ある。

早川 (拓殖大学) 仮想マシンを使うと、割り込み応答
時間が予想できない。

著者 仮想マシンの仕様として定義し、保証できる応
答時間を例えば I/Oポートで取得できるようにす
ることを考えている。

参 考 文 献

1) Intel Corporation. Intel(R) 64 and IA-32

Architectures Software Developer’s Manual,

Volume 3A, 2009. http://www.intel.com/

products/processor/manuals/index.htm Or-

der Number: 253668-032US

2) Intel Corporation. IA-PC HPET (High

Precision Event Timers) Specification Re-

vision 1.0a, 2004. http://www.intel.com/

hardwaredesign/hpetspec_1.pdf

3) Hewlett-Packard Corporation, Intel Cor-

poration, Microsoft Corporation, Phoenix

Technologies Ltd., and Toshiba Corpora-

tion. Advanced Configuration and Power

Interface Specification Revision 4.0, 2009.

http://www.acpi.info/spec.htm

4) Intel Corporation. Intel(R) 82801AA (ICH)

and Intel(R) 82801AB (ICH0) I/O Controller

Hub Datasheet, 1999. http://www.intel.com/

design/archives/chipsets/815/index.htm

Order Number: 290655-003

5) Intel Corporation. Extensible Firmware Inter-

face Specification Version 1.10, 2002.

http://www.intel.com/technology/efi/

main_specification.htm

各URLは2009年11月4日にアクセスできることを
確認した。


